Microservices
Architecture

Aleksandar Dimic

What is a microservice?

What is a microservice architecture?

A large application is broken down into smaller,
independent (micro) services

Each microservice:
Does one thing well - single responsibility
Can be developed, deployed, and scaled independently
Has its own database or data storage (in theory)
Communicates with other services

Main goal - improve performance & scalability

how to transfer

Monolith to Microservice

Order Confirmation on Monolith Arhc.

Administrator confirms one order:

Process Order Capture Create CoEri::;rirli?;lon Notify Init Courier
data Payment Invoice Customer Warehouse Shipment
e Check stock e Call PGW API e Call Tax API e Create PDF Call Slack API Call DHL api

Call Mail API

External API call

Call ERP API

External API call

Change status e Saveresponse

External API call

Executed locally

duration: 100ms duration: 600ms duration: 900ms duration: 600ms

Total process duration for one order: ~3 seconds

What about bulk confirmation for 50 orders???

duration: 100ms

Save response
External API call

duration: 600ms

Order Confirmation using Microservices

Process Order Order . o .
data Conifrmed Administrator confirms order

ECommerce CMS A in 100ms and trigger event
Backgroynd Payment Emailing
processing Microservice = Microservice

Async in background Async in background
Invoicing Courier
Microservice @ - . :
JOISy | Microservice

A [k
sync in background Async in background

Microservices run in background listening to events

How microservices communicate?

Asynchronous (Message Brokers)
Previous example - Increase performance

Synchronous (Service Discovery)
Improves scalability

Message Brokers

Async communication)
Service A sends a message to the broker, and then Service R a b b I t
B picks it up later-whenever it's ready

Message (Job) Queues

Messages (Jobs) are executed by queue workers

Event driven (publish-subscribe)

Message (Event) is published and subscribers are notified o
&3 kafka &B redis

Goal: Service decoupling

Add different listeners regardless of what generates event

Service Discovery - Synchronous

Autoscaling
Recommendation
Microservice
(instance 1)

kubernetes 2. Call random
instance

Recommendation
Microservice
(instance 2)

Webshop

Recommendation
Microservice
(instance 3)

1. Give me "Recommendation
Service" locations

» SR

Service Registry

Service Registry keeps
locations of all
microservices

Used in distributed
systems (kubernetes)

Goal: Scale synchronous
communication

Best known service
registries:

e Netflix Eureka
e Consul
e /ookeeper

Why is containerization important?

Isolation

Each microservice runs in its own container, with its own dependencies.
No conflicts.

Portability

Containers work the same on any environment-local dev, staging,
production, or cloud.

docker - scalability

Containers can be easily scaled with orchestrators like Kubernetes.

Fast Deployment

Containers start quickly, making deployments and rollbacks smoother.

10

Break application into smaller parts ‘ Use appropriate frameworks

|dentify processes and organize Java Spring - defacto microservice standard

microservices. NextJS - NodeJS framework
NOT EVERYTHING IS A MICROSERVICE!

Containerize applications ‘ Implement CI/CD

Pack your application into Docker Images. Define procedures for deployment and
implement them on some CI/CD platform

All major GIT platforms offer CI/CD

It will help you versioning your deployments.

Message Brokers & Service discovery ‘ Orchestrate with Kubernetes
Use Kafka, RabbitMQ, or SQS for async Use Kubernetes to deploy, manage, scale,
communication between services. and monitor containers.

Implement service discovery to load balance

How reach microservice architecture?

Explore microservices further

Thank you for listening!

