
Microservices
Architecture

Aleksandar Dimic



What is a microservice?



What is a microservice architecture?

A large application is broken down into smaller,
independent (micro) services

Each microservice:

Main goal - improve performance & scalability

Does one thing well - single responsibility
Can be developed, deployed, and scaled independently
Has its own database or data storage (in theory)
Communicates with other services

3



Monolith to Microservice 
how to transfer



Order Confirmation on Monolith Arhc.

Process Order
data

Check stock

Change status

Executed locally

duration: 100ms

Capture
Payment

Call PGW API

Save response 

External API call

duration: 600ms

Create
Invoice

Call Tax API

Call ERP API

External API call

duration: 900ms 

Confirmation
Email to

Customer

Create PDF

Call Mail API

External API call

duration: 600ms

Notify
Warehouse

Call Slack API

duration: 100ms

Init Courier
Shipment

Call DHL api

Save response

External API call

duration: 600ms

Administrator confirms one order:

Total process duration for one order: ~3 seconds

What about bulk confirmation for 50 orders???

5



Order Confirmation using Microservices

Process Order
data

ECommerce CMS

Order
Conifrmed

Event

Payment
Microservice

Async in background

Invoicing
Microservice

Async in background

Emailing
Microservice
Async in background

Courier
Microservice
Async in background

Administrator confirms order
in 100ms and trigger event

Microservices run in background listening to events

Background
processing

6



How microservices communicate?

Asynchronous (Message Brokers)

Synchronous (Service Discovery)

Previous example - Increase performance

Improves scalability



Message Brokers

Async communication

Message (Job) Queues

Event driven (publish-subscribe)

Goal: Service decoupling

Service A sends a message to the broker, and then Service
B picks it up later—whenever it's ready

Messages (Jobs) are executed by queue workers

Message (Event) is published and subscribers are notified

Add different listeners regardless of what generates event

8



Service Discovery - Synchronous

Webshop
Recommendation

Microservice
(instance 2)

Recommendation
Microservice
(instance 3)

Recommendation
Microservice
(instance 1)

Service Registry

SR

New Instance registers itself on SD
1. Give me "Recommendation
Service" locations

2. Call random
instance

Service Registry keeps
locations of all
microservices

Used in distributed
systems (kubernetes)

Goal: Scale synchronous
communication

Best known service
registries:

Netflix Eureka
Consul
Zookeeper

Autoscaling

9



Why is containerization important?

Isolation
Each microservice runs in its own container, with its own dependencies.
No conflicts.

Portability
Containers work the same on any environment—local dev, staging,
production, or cloud.

Scalability
Containers can be easily scaled with orchestrators like Kubernetes.

Fast Deployment
Containers start quickly, making deployments and rollbacks smoother.

10



5 Message Brokers & Service discovery
Use Kafka, RabbitMQ, or SQS for async
communication between services.

Implement service discovery to load balance

6 Orchestrate with Kubernetes
Use Kubernetes to deploy, manage, scale,
and monitor containers.

4 Implement CI/CD
Define procedures for deployment and
implement them on some CI/CD platform

All major GIT platforms offer CI/CD

1 Break application into smaller parts
Identify processes and organize
microservices.

NOT EVERYTHING IS A MICROSERVICE!

2 Use appropriate frameworks
Java Spring - defacto microservice standard

NextJS - NodeJS framework

3 Containerize applications
Pack your application into Docker Images.

It will help you versioning your deployments.

How reach microservice architecture?



Thank you for listening!
Explore microservices further


